
An Analysis of Deep Network Preimages of 1 10

An Analysis of Deep Network Preimages

On the Domains, Ranges, Preimages, Invertibility and Vulnerabilities of Neural Networks

Nathaniel I. Rojas

rojasinate@gmail.com

Abstract

In Deep Learning, understanding the inner works of
neural networks is key to interpreting their behavior
as well as their vulnerabilities. Finding the pre-
image for any given value in the range of a neural
network is of significant importance. This work
contributes an exact parametric solution for defining
the preimage of particular class of deep networks.

In this work, steps are made toward a general
solution of the pre-image problem. The key is to
analyze the mathematical structure under certain
assumptions that lead to key insights into the form
of the general solution. A general solution to the pre-
image problem for a large class of multi-layer
perceptions is presented.

With these insights, the nature and source of
adversarial attacks on neural networks is explored
and initial results are developed for an optimization
free “single shot” generation method for adversarial
examples.

Keywords: Deep Learning, Neural Network,
Preimage, Adversarial Examples.

1	 Introduction

In many regards neural networks are black boxes.
Gaining a better understanding of how they operate is
beneficial in many regards. A very important yet not
fully understood feature of deep networks is the
problem of invertibility and the problem of finding the
preimages for classification problems. Having a solid
understanding of this specific part of deep networks
will shed light on why some networks generalize
while others do not. Secondly, finding an exact

definition of deep network preimages will elucidate a
deep network’s vulnerabilities (eg unsafe classification
in self driving vehicles and adversarial attacks).

In this work a large class of networks is
analyzed. Specifically, the family of deep fully
connected networks using Leaky Relu activation are 1

analyzed. This family of networks admits useful facts
for defining a general solution to the problem of
invertibility and finding preimages. Using this family
of models as grounding, methods for analyzing the
inverse as well as preimage are elaborated and made
rigorous. These, methods can be extended for use on
more general sets of network architectures.

Since the problem is complex, Section 2 will
provide some initial definitions, observations and
useful facts/lemmas (proofs are in the appendix).
Furthermore, simplifying assumptions will be defined
and motivated.

Following the initial considerations will be a
rigorous problem statement. After this problem
statement the heart of the paper will begin. After this,
will be an analysis of the mathematical result. Next,
some initial experiments are explained which justify
some of the assumptions and demonstrate the
possibility of an exact method for generating
adversarial examples.

Finally, the paper concludes by explaining
limitations and enumerating avenues for further
research.

2	 Related Work

There is a great amount of literature that provides
insights into the functioning of neural networks. The
most similar work to this one analyzes a similar family
of deep networks with the primary difference being
that they analyze the preimage problem with networks
using standard ReLU activation [1]. Furthermore, the

 Leaky Relu is only a familiar activation. All that is necessary is that the activation be piecewise continuous, 1

defined for all input values and be a non-linear permutation of the input space.

mailto:rojasinate@gmail.com

An Analysis of Deep Network Preimages of 2 10
work in [1] is not as mathematically exact as the
contributions herein. Thus, this work provides more
rigorous footing hence complementing [1].

Similar works analyze the ability of neural
networks to optimally classify input data which
satisfies certain conditions [2]. Another, rigorously
handles the problem of expressing bounds on the
types of functions that neural networks can
approximate [3]. Others, analyze the preimage
problem by using strategic methods of approximation
[4].

This work adds to the literature by providing
an exact mathematical recurrence formula for defining
the preimage of a certain class of deep networks
(much like the backward recurrence for back
propagation). This is a solid contribution because it
does not rely on approximation methods - it is exact.
Finally, the work presented here can be used to extend
the analysis in [1] to define an exact preimage
recurrence for a more general class of network
architectures.

Next, it can be seen that this work is of
theoretical importance because it provides an exact
solution to the preimage problem for an entire class of
deep networks. Finally, this work presents another
perspective on adversarial examples.

3	 Initial Considerations

Notation

Layer Number

 - denotes the number of hidden layers. The zero
layer is considered the input.

Matrix Spaces

 - column space of a matrix

 - row space of a matrix

 - null space of a matrix

Parameter Matrices

 - denotes an arbitrary parameter matrix.

 - denotes the Moore-Penrose pseudo-inverse of an
arbitrary parameter matrix.

Null Space

 - denotes a parameterized basis for . That

is, it is a linear sum of any null-space basis with
variable coefficients.

Indexing Layers

 - bracketed superscripts are to index by layer.

Forward Function

 - denotes the forward pass

for one layer

 - denotes the the entire network
forward pass.

Pseudo Inverse (backward)

Pseudo Domain

 - the set of all inputs that can be recovered by the

pseudo-inverse. There will be more on this shortly.

Pseudo Range

Since the true range (softmax output) is entirely
dependent on the final column space of the final
parameter matrix this work will only consider this
column space.

Assumptions

Full Rank

All are full row rank. This assumption is key to
grounding the analysis. Without it, many key
intuitions would be obscured by the details.

Fan in criterium
For all layers it will be assumed that the matrix is
either square or has more columns than rows.
Formally:

On Invertibility

Strictly speaking a network does not in general have
an inverse. However, parallel to the relationship
between a matrix and its pseudo-inverse a network
also has a pseudo-inverse. To carry this analogy
further we define the domain of invertibility as the
pseudo-domain. That is, any input coming from the
pseudo-domain will map to an output (in the pseudo-
range) and from that output can be reconstructed from
the pseudo-inverse. That is, we will see that:

L

C(A)
R(A) = C(AT)
N(A)

Θ
Θ+

n[L] N(Θ[L])

a[l], Θ[l]

ℱ[l] = f (Θ[l]a[l−1] + b[l])

ℱ = ℱ[L] ∘ ⋯ ∘ ℱ[1]

ℬ[l](y) = (Θ[l])+(f −1(y) − b[l])

ℬ = ℬ[1] ∘ … ∘ ℬ[L]

X+

Y + = C(Θ[L])

Θ[l]

∀l : Θ[l] ∈ ℝm×n, m ≤ n

An Analysis of Deep Network Preimages of 3 10

Useful Facts & Results

Recall that between the row space and column space
of a matrix there is a one-to-one correspondence.
Formally:

Fact (1):

Next, under the full rank assumption and fan in
criterium a useful lemma can be proven:

Lemma (1):

That is, the row space of parameter matrix is a subset
of the column space of the previous layer’s parameter
matrix.

This lemma coupled with one more fact are key to all
subsequent derivations. Recall that a matrix
multiplying a vector on the left returns a vector that is
in the column space of that matrix. Formally:

Fact (2):

Lemma (1) and Fact (1) present another important fact.
Namely, that

Theorem (1): If then
 but this implies

That is, if we take a vector in the column space of
 then by fact (1) we can use the pseudo-inverse to

obtain a vector in the row space of but by lemma
(1) this is a subspace of and thus the vector is
contained in the column space of the previous
parameter matrix.

Fact (2): Under the current assumptions we can ignore
the bias and activation when finding pseudo-domain
and pseudo range.

Proof sketch: Adding the bias and applying LReLU
doesn’t add or remove vectors from .

What this says, is that the space of vectors coming in is
the same as the space that comes out.

Theorem (2):

That is the the product of all the pseudo inverses
acting on the the row space of the final parameter
matrix returns the pseudo-domain.

Note: This is not the inverse but just the definition of
the pseudo-domain.

What theorem (2) shows is that there exists a mapping
from the pseudo-range to the pseudo-domain.
Furthermore, it means that if we can define some
subset of the pseudo-range we can then define the
pseudo-inverse for that subset. Finally, we observe
that it is possible to define the pre-image for
parameterized subsets of the pseudo-range using
some facts from linear algebra (what this means will
be explained in depth).

4	 Problem Statement

In this work, the class of neural networks analyzed are
deep and fully-connected with invertible activations
that are bijective (eg Leaky Relu) from domain to
range in the hidden layers followed by a final softmax
output for a classification task with classes.

Using this architecture the general equations
for the pseudo-domain, range and pre-image are
presented.

Formal Problem Statement

Let a parameterized subset of the pseudo-range be
some subset which can be expressed explicitly. Of
particular interest are subsets of the pseudo-range
which get classified as a specific class. Denote these
class subsets as:

The problem is then to find a function/algorithm
such that:

That is, to find the process which returns the pre-
image of the parameterized class range. It turns out
that is problem has an explicit solution and presenting
this solution is the heart of the matter.

∀x+ ∈ X+ : x+ = ℬ ∘ ℱ(x+)

Θ : R(Θ) ⇆ C(Θ) : Θ+

R(Θ[l+1])) ⊆ C(Θ[l])

Θx ∈ C(Θ)

x ∈ C(Θ[l+1])
(Θ[l+1])+x ∈ R(Θ[l+1])
x ∈ C(Θ[l])

Θ[l+1]

Θ[l+1]

C(Θ[l])

C(Θ[l])

L

∏
l=1

(Θ[l])+ : C(Θ[L]) → X+

k

Y +
c ⊆ Y +

Pre

ℱ ∘ Pre(Y +
c) = Y +

c

An Analysis of Deep Network Preimages of 4 10

5	 Heart of the Matter

Initialization

Consider an arbitrary class c amongst k classes and
denote its probability by then:

Condition (1):

That is, the argmax of our output probability vector
will be the target class only if the probability of that
class is greater than the “uniform threshold.”

However, condition (1) is implied by another
condition that will lay the foundation for the explicit
definition of the class pre-image.

Condition (2):

However, all vectors which satisfy condition (2) are
precisely these vectors we defined to be . Thus:

Furthermore we see that

The convenience of condition (2) is that it presents an
explicit definition that is easy to work with. That is, a
vector is of the form:

Where

And

 (ie real variables).

That is, the delta vector ensures that the argmax is .
This delta vector and the constant present the first
set of parameters of the pre-image function.

We can then recover the family of previous activations
that result in our family of z-vectors using:

The Central Result

With the starting case defined, it is possible to extract
the general backwards recurrence which goes from
activation to activation and terminates at .

Backward Recurrence:

With special cases

6	 Analysis

What has just been demonstrated is that it is possible
to define any class pre-image in terms of the the
parameter matrices and a set of vectors and
parameters that are derived from the parameters
themselves. Formally:

That is, the pre-image of any class is a function of the
class number, the delta vector, the parameter matrices
and the coefficients of the null space vectors.

Note: Within the pre-image function we must assume
that a null-space bases have already been found. An
algorithmic implementation would need to extract
these.

7	 Initial Experiments

It seems that leaky relu as the network grows deeper
has a “higher” dimensional pseudo inverse than 10
dimensions. It seems that relu does not if don’t include
null parts. Furthermore it seems that relu might be
even easier to attack than leaky relu if we use the
simple linear pseudo inverse of relu.

pc

argmax(ŷ) = c ⇒ pc >
1
k

c

argmax(z[L]) = c

Y +
c

Y +
c = {zi |argmax(zi) = c}

softmax(Y +
c) = Yc

z[L]
c ∈ Y +

c

z[L]
c = zc − δ =

zc − δ1
⋮
zc
⋮

zc − δk

δi > 0

δi, zc ∈ ℝ

c
zc

a[L]
c = (Θ[L])+(z[L]

c − δ − b[L]) + n[L]

Xc = a[0]
c

z[l]
c = f −1(a[l+1]

c)

a[l−1]
c = (Θ[l])+(z[l]

c − b[l]) + n[l]

a[L]
c = (Θ[L])+(z[L]

c − δ − b[L]) + n[L]

a[0]
c = Xc

Pre(Y +
c) = F (c, zc, δ, {Θ[l]}, N)

An Analysis of Deep Network Preimages of 5 10

Data

Pytorch MNIST data was used for all experiments
(60,000 training set and 10,000 test set). For simplicity,
the data was used raw (ie no augmentation or
centering).

Networks Architectures Used

The final non-linear mapping uses softmax. Other than
this final layer, each layer uses a linear operation with
a bias and leaky relu. Each layer uses the same
negative slope for the leaky relu nonlinearity. Thus, all
that must be specified to list the networks is the
dimension of each feature mapping.

Training

Since this was an experiment involving the preimages
of each trained network, there was no tuning. For
comparison, two optimizers were used: Adam and
SGD with momentum = 0.9. The learning rate for both
networks is 0.001. All models where trained for five
epochs. The criterion was cross entropy loss.

Preimage Calculation

Numerical issues, padding p, difference between
Adam & SGD

Plausibility of Preimage Based Attacks

Null Preimage Poisoning (Low Fidelity Attack)

By removing the pseudo part of an input image one
can “inject” adversarial data.

x̃ = x − x+ + a

Dim Net1 Net2 Net3 Net4 Net5

Input 784 784 784 784 784

Layer1 10 128 128 128 512

Layer2 10 64 64 256

Layer3 10 32 128

Layer4 10 64

Layer 5 32

Layer 6 10

Adam 92.73 97.78 97.46 97.08 97.38

SGD 92.20 97.24 97.46 97.19 97.12

Rank Full Full Full Full Full

Figure X: The number of hidden units for each
hidden layer, the rank of all trained parameter
matrices and the test accuracy for each network and
optimizer used.

SGD,p=0 , batch size 5, 5 epochs linear, z = np.random.rand(1)/100,delta = np.random.rand(10,1)/100. SGD
weights produce more instability than Adam weights… just check the min and max of the pre to see if its
possible.

An Analysis of Deep Network Preimages of 6 10

8 Limitations

The analysis herein serves as solid ground for
understanding and extending to a general solution.
However, much of this analysis was made possible by
convenient simplifying assumptions. Furthermore,
there are other more complex architectures that will
require more granular analysis.

9	 Refining the Result

It should be pointed out that the current result does
not take into consideration constraints presented by
natural data. For example, normalized pixel data
restricts the preimage to vectors having components in
the range [0,1]. The current recurrence can be refined
further to incorporate these data restrictions.

Forward Constraining

To incorporate an approximate solution to the
“natural” constraint on the z-vector all that needs to be
done is forward propagate min-max constraints for
each component. Using a simple lemma we can define
the forward constraint:

Lemma:

That is, the i-th component of a matrix multiplied by a
vector with components constrained to the range [a,b]
is maximized when the vector uses its minimum a on
the negative components of the row vector and its
maximum on the positive values. That is, the inner
product tries to make each term in the sum as positive
as possible.

This lemma puts bounds on what we can sample. That
is, we cannot sample a z-vector with any part outside
the bounds. However, it doesn’t provide an exact way
to find valid z-vectors. The problem is that once a
component is fixed the bounds on the others might
decrease and acquire “holes.” Thus what is needed is a
way to cascade from component to component.
However, delineating such constraints is the subject of
further research.

10	 Further Research

Generalizing

To make the analysis complete, the case of variably
ranked parameter matrices must be investigated.
Furthermore, it should be investigated whether max
rank is good assumption. That is, if neural networks
tend to learn max rank parameter matrices.

In defining the inverse recurrence the
invertibility of the activation was assumed. Surjective
functions like Relu should be investigated.

∀x ∈ [a , b]n : argmaxx(Θx)i = b | | [rowi(Θ)T]+ | |1 + a | | [rowi(Θ)T]− | |1

Adam, linear, p = 1000,z=0,d=0, no null, question: is p=1000 even possible given the restriction the input
domain? It is interesting to note that these preimages are not as crisp for p < 5 but keep their relative crispness
as p grows to values even up to 100,000,000. Unlike SGD linear which becomes noisy for large values.

An Analysis of Deep Network Preimages of 7 10

Subsequent works or follow up research
should consider generalizing the analysis to arbitrary
activations and architectures (eg CNN, RNN,
AutoEncoders).

Adversarial Examples

A discussion on the pre-image of neural network
classes is incomplete without at least mentioning
adversarial examples. It should be noted that the
existence of adversarial examples means that there
exist “encroachments” between the pre-images of

Figure 3: Even with a naive “forcing” method to make the preimage “natural” and constraining the pixel values
to be between 0 and 0.10 the Adam preimages for the linear still produce 8 of the 10 the target outputs. This
means that for these 8 classes the 774 null vectors can be used to generate arbitrary looking images and have
this added on top without much loss in fidelity. This points to the fact that the robust nature of neural networks
is a double edged sword - even something so arbitrary as zeroing all negative values and standardizing to a
small range. Interestingly, SGD weights are not susceptible to this low fidelity attack.

Figure 4: Adam linear adversarial Examples occur because of the robust freedom allowed by the null space
vectors. If one removes the pseudo part from any example and adds the low foot print noise they can attack the
network with these examples. Interestingly these examples where generated exactly no optimization needed. z
= 0 p=1000 delta = np.zeros((10,1) noise_scale = 10 exclude = [0,8]

An Analysis of Deep Network Preimages of 8 10

different classes. That is, these messy overlaps contain
vectors which satisfy a certain condition.

Attack Condition: A vector satisfying
 for some and small value is

an adversarial example.

The attack condition states that an attack vector must
be in the pre-image of a class but be quantitatively
close to some vector from class where the example
looks “natural.” That is, it must look like it belongs to
another class. This is nothing new, however, further

x̃ ∈ Xa
| | x̃ − xb | | < ϵ xb ∈ Xb ϵ

a
b xb

Figure 5: Adam preimages for each model tested with no null vectors. As the network gets deeper the
numerical error begins to make the preimage calculation highly inaccurate. Furthermore, the results become
more noisy. This could mean that the null vectors need to be chosen more strategically or point to a
computational limit on numerical preimage calculation. The pixel values begin to grow large as the network
gets deeper. For example, the first row has pixel ranges like [-0.2,0.2] but the final row has [-2000,2000].

Figure 6: Adversarial Examples for Adam-net1. Here tgt denotes the class we want the network to output.

An Analysis of Deep Network Preimages of 9 10

analysis of the pre-image recurrence could yield
insights. Fleshing out the theory of adversarial attacks
is critical for AI safety.

An interesting thought is that there might be
rigorously definable attacks overtime on RNNs (eg
feints). Finally, attempts should be made to define the
universal properties of attacks on neural networks and
general classes of “counter” measures should be
devised. An interesting though: what if we added
adversarial noise for all classes to “drown” out an
attack in “competing noise” thus allowing the greater
information present in the image as a whole to
“dominate” - predict the raw image, predict the
“doped” image and if predictions defer flag the image.

More rigorous analysis of adversarial attacks
and adversarial example generation. For example:
finding the minimum amount of adversarial noise to
move across decision boundaries. Develop higher
resuolution attacks using the preimage method.

Natural Constraints

Real data is constrained (eg normalized pixel values).
A quick run down of the math and difficulty involved:

A good research endeavor would be to survey all
experiments and open sourced code to verify that
adversarial examples and high confidence noise
generated do not go “out of bounds.” Thus making
these examples “invalid” in a “natural” sense.

Implementation

Closely tied to the natural constraint is the
implementation.

Having theoretical understanding is not enough.
Algorithms for finding pre-images and discovering
vulnerabilities as well as “firewalls” should be
implemented and stress tested.

Numerical Stability

Are there subsets of z-vectors which are inherently
unstable to network pre-imaging? Can we find the
stable parts? Is there a more effective way than using
the pseudo inverse directly?

9	 Conclusion

This work serves as the initial starting point for a
series of publications to come. Where the points
alluded to in the previous section will be explored and
developed. It is hoped that this work serves to help
ground our understanding of deep networks on a
more rigorous and theoretical level.

10	 Bibliography

Montufar, G., Pascanu, R., Cho, K., & Bengio, Y. (n.d.)
(2014). On the Number of Linear Regions of Deep
Neural Networks. ArXiv 402.1869v2.

Figure 7: SGD-Linear does not admit such a “naive” method.

An Analysis of Deep Network Preimages of 10 10
Basri, R., & Jacobs, D. (2016). Efficient Representation
of Low-Dimensional Manifolds using Deep Networks.
ArXiv:1602.04723v1.

Carlsson, S., Azizpour, H., & Razavian, A. (2016,
November 4). doi: https://openreview.net/pdf?
id=HJcLcw9xg

Mahendran, A., & Vedaldi, A. (2014). Understanding
Deep Image Representations by Inverting Them.
ArXiv:1412.0035v1.

Ochoa, B. (2015, January 16). The Null Space of a
Matrix. Retrieved January 28, 2020, from https://
c s e w e b . u c s d . e d u / c l a s s e s / w i 1 5 / c s e 2 5 2 B - a /
nullspace.pdf

11	 Appendices

The Admissibility of All Null Space Vectors

A concern one might have with using the null space
vectors in the backward recurrence is whether or not
all the null space vectors are admissible in the pre-
image. That is, can we prove that no null space vector
will shift the output to be in a different class?

At face value it is obvious that all null space vectors as
admissible because they cannot affect the output. Thus
they can only “broaden” the preimage. However, A
direct proof is possible by substituting the definition of
the pre-image into the network forward function:

First a new notation is necessary to for the proof:

That is, it is a sub path of the network forward
function if we view the full network as a path.

Evaluating the network on the class pre-image we get:

This simplifies to

because and
But we can again simplify this to

That is, we see that

We can carry this all the way to the last layer

But we can substitute the definition of into the
equation to obtain

Which reduces to

What this demonstrates is that the backward
recurrence is admissible for all null space vectors.
Additionally, there are no more vectors that could be
in the pre-image because the row space is orthogonal
to the null space and hence the null space basis
combined with the row space basis are a full basis.

ℱ[i: j] = ℱ[j] ∘ … ∘ ℱ[i]

ℱ(Xc) = ℱ[2:L] ∘ f (Θ[1](Θ[1])+(z[1]
c − b[1]) + Θ[1]n[1] + b[1])

ℱ(Xc) = ℱ[2:L] ∘ f (z[1]
c)

z[1]
c − b[1] ∈ C(Θ[1]) Θ[1]n[1] = 0

ℱ(Xc) = ℱ[2:L](a[2]
c)

ℱ[i:L](a[i]
c) = ℱ[i+1:L](a[i+1]

c)

ℱ[L](a[L−1]
c) = Θ[L]a[L−1]

c + b[L]

a[L−1]
c

ℱ[L](a[L−1]
c) = Θ[L]((Θ[L])+(z[L]

c − b) + n[l]) + b[L]

ℱ[L](a[L−1]
c) = z[L]

c ◼

	Abstract
	1 Introduction
	2 Related Work
	3 Initial Considerations
	Notation
	Assumptions
	On Invertibility
	Useful Facts & Results
	4 Problem Statement
	5 Heart of the Matter
	Initialization
	The Central Result
	6 Analysis
	7 Initial Experiments
	Data
	Networks Architectures Used
	Training
	Preimage Calculation
	Plausibility of Preimage Based Attacks
	8 Limitations
	9 Refining the Result
	Forward Constraining
	10 Further Research
	Generalizing
	Adversarial Examples
	Natural Constraints
	Implementation
	Numerical Stability
	9 Conclusion
	10 Bibliography
	11 Appendices
	The Admissibility of All Null Space Vectors

