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Abstract


In Deep Learning, understanding the inner works of 
neural networks is key to interpreting their behavior 
as well as their vulnerabilities. Finding the pre-
image for any given value in the range of a neural 
network is of significant importance. This work 
contributes an exact parametric solution for defining 
the preimage of particular class of deep networks. 


In this work, steps are made toward a general 
solution of the pre-image problem. The key is to 
analyze the mathematical structure under certain 
assumptions that lead to key insights into the form 
of the general solution. A general solution to the pre-
image problem for a large class of multi-layer 
perceptions is presented.


With these insights, the nature and source of 
adversarial attacks on neural networks is explored 
and initial results are developed for an optimization 
free “single shot” generation method for adversarial 
examples.


Keywords: Deep Learning, Neural Network, 
Preimage, Adversarial Examples.

1	 Introduction


In many regards neural networks are black boxes. 
Gaining a better understanding of how they operate is 
beneficial in many regards. A very important yet not 
fully understood feature of deep networks is the 
problem of invertibility and the problem of finding the 
preimages for classification problems. Having a solid 
understanding of this specific part of deep networks 
will shed light on why some networks generalize 
while others do not. Secondly, finding an exact 

definition of deep network preimages will elucidate a 
deep network’s vulnerabilities (eg unsafe classification 
in self driving vehicles and adversarial attacks). 


In this work a large class of networks is 
analyzed. Specifically, the family of deep fully 
connected networks using Leaky Relu  activation are 1

analyzed. This family of networks admits useful facts 
for defining a general solution to the problem of 
invertibility and finding preimages. Using this family  
of models as grounding, methods for analyzing the 
inverse as well as preimage are elaborated and made 
rigorous. These, methods can be extended for use on 
more general sets of network architectures.


Since the problem is complex, Section 2 will 
provide some initial definitions, observations and 
useful facts/lemmas (proofs are in the appendix). 
Furthermore, simplifying assumptions will be defined 
and motivated.


Following the initial considerations will be a 
rigorous problem statement. After this problem 
statement the heart of the paper will begin. After this, 
will be an analysis of the mathematical result. Next, 
some initial experiments are explained which justify 
some of the assumptions and demonstrate the 
possibility of an exact method for generating 
adversarial examples. 


Finally, the paper concludes by explaining 
limitations and enumerating avenues for further 
research.


2	 Related Work


There is a great amount of literature that provides 
insights into the functioning of neural networks. The 
most similar work to this one analyzes a similar family 
of deep networks with the primary difference being 
that they analyze the preimage problem with networks 
using standard ReLU activation [1]. Furthermore, the 

 Leaky Relu is only a familiar activation. All that is necessary is that the activation be piecewise continuous, 1

defined for all input values and be a non-linear permutation of the input space. 
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work in [1] is not as mathematically exact as the 
contributions herein. Thus, this work provides more 
rigorous footing hence complementing [1]. 


Similar works analyze the ability of neural 
networks to optimally classify input data which 
satisfies certain conditions [2]. Another, rigorously 
handles the problem of expressing bounds on the 
types of functions that neural networks can 
approximate [3]. Others, analyze the preimage 
problem by using strategic methods of approximation 
[4]. 


This work adds to the literature by providing 
an exact mathematical recurrence formula for defining 
the preimage of a certain class of deep networks 
(much like the backward recurrence for back 
propagation).  This is a solid contribution because it 
does not rely on approximation methods - it is exact.  
Finally, the work presented here can be used to extend 
the analysis in [1] to define an exact preimage 
recurrence for a more general class of network 
architectures.


Next, it can be seen that this work is of 
theoretical importance because it provides an exact 
solution to the preimage problem for an entire class of 
deep networks. Finally, this work presents another 
perspective on adversarial examples.


3	 Initial Considerations


Notation

Layer Number


 - denotes the number of hidden layers. The zero 
layer is considered the input. 


Matrix Spaces

 - column space of a matrix


 - row space of a matrix

 - null space of a matrix


Parameter Matrices

 - denotes an arbitrary parameter matrix.


 - denotes the Moore-Penrose pseudo-inverse of an 
arbitrary parameter matrix.


Null Space

 - denotes a parameterized basis for . That 

is, it is a linear sum of any null-space basis with 
variable coefficients.


Indexing Layers


 - bracketed superscripts are to index by layer. 


Forward Function

 - denotes the forward pass 

for one layer


 - denotes the the entire network 
forward pass.


Pseudo Inverse (backward)


Pseudo Domain

 - the set of all inputs that can be recovered by the 

pseudo-inverse. There will be more on this shortly. 


Pseudo Range


Since the true range (softmax output) is entirely 
dependent on the final column space of the final 
parameter matrix this work will only consider this 
column space.


Assumptions

Full Rank

All  are full row rank. This assumption is key to 
grounding the analysis. Without it, many key 
intuitions would be obscured by the details.


Fan in criterium 
For all layers it will be assumed that the matrix is 
either square or has more columns than rows. 
Formally:


On Invertibility

Strictly speaking a network does not in general have 
an inverse. However, parallel to the relationship 
between a matrix and its pseudo-inverse a network 
also has a pseudo-inverse. To carry this analogy 
further we define the domain of invertibility as the 
pseudo-domain. That is, any input coming from the 
pseudo-domain will map to an output (in the pseudo-
range) and from that output can be reconstructed from 
the pseudo-inverse. That is, we will see that:


L

C(A)
R(A) = C(AT )
N(A)

Θ
Θ+

n[L] N(Θ[L])

a[l], Θ[l]

ℱ[l] = f (Θ[l]a[l−1] + b[l])

ℱ = ℱ[L] ∘ ⋯ ∘ ℱ[1]

ℬ[l](y) = (Θ[l])+( f −1(y) − b[l])

ℬ = ℬ[1] ∘ … ∘ ℬ[L]

X+

Y + = C(Θ[L])

Θ[l]

∀l : Θ[l] ∈ ℝm×n, m ≤ n
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Useful Facts & Results

Recall that between the row space and column space 
of a matrix there is a one-to-one correspondence. 
Formally:


Fact (1): 

Next, under the full rank assumption and fan in 
criterium a useful lemma can be proven:


Lemma (1): 

That is, the row space of parameter matrix is a subset 
of the column space of the previous layer’s parameter 
matrix.


This lemma coupled with one more fact are key to all 
subsequent derivations. Recall that a matrix 
multiplying a vector on the left returns a vector that is 
in the column space of that matrix. Formally:


Fact (2): 

Lemma (1) and Fact (1) present another important fact. 
Namely, that 


Theorem (1): If  then 
 but this implies 


That is, if we take a vector in the column space of 
 then by fact (1) we can use the pseudo-inverse to 

obtain a vector in the row space of  but by lemma 
(1) this is a subspace of  and thus the vector is 
contained in the column space of the previous 
parameter matrix.


Fact (2): Under the current assumptions we can ignore 
the bias and activation when finding pseudo-domain 
and pseudo range. 


Proof sketch: Adding the bias and applying LReLU 
doesn’t add or remove vectors from .  


What this says, is that the space of vectors coming in is 
the same as the space that comes out.


Theorem (2):  

That is the the product of all the pseudo inverses 
acting on the the row space of the final parameter 
matrix returns the pseudo-domain.


Note: This is not the inverse but just the definition of 
the pseudo-domain.


What theorem (2) shows is that there exists a mapping 
from the pseudo-range to the pseudo-domain. 
Furthermore, it means that if we can define some 
subset of the pseudo-range we can then define the 
pseudo-inverse for that subset. Finally, we observe 
that it is possible to define the pre-image for 
parameterized subsets of the pseudo-range using 
some facts from linear algebra (what this means will 
be explained in depth). 

4	 Problem Statement


In this work, the class of neural networks analyzed are 
deep and fully-connected with  invertible activations 
that are bijective (eg Leaky Relu) from domain to 
range in the hidden layers followed by a final softmax 
output for a classification task with  classes.


Using this architecture the general equations 
for the pseudo-domain, range and pre-image are 
presented. 


Formal Problem Statement

Let a parameterized subset of the pseudo-range be 
some subset which can be expressed explicitly. Of 
particular interest are subsets of the pseudo-range 
which get classified as a specific class. Denote these 
class subsets as:


The problem is then to find a function/algorithm  
such that:


 

That is, to find the process which returns the pre-
image of the parameterized class range. It turns out 
that is problem has an explicit solution and presenting 
this solution is the heart of the matter.


∀x+ ∈ X+ : x+ = ℬ ∘ ℱ(x+)

Θ : R(Θ) ⇆ C(Θ) : Θ+

R(Θ[l+1])) ⊆ C(Θ[l])

Θx ∈ C(Θ)

x ∈ C(Θ[l+1])
(Θ[l+1])+x ∈ R(Θ[l+1])
x ∈ C(Θ[l])

Θ[l+1]

Θ[l+1]

C(Θ[l])

C(Θ[l])

L

∏
l=1

(Θ[l])+ : C(Θ[L]) → X+

k

Y +
c ⊆ Y +

Pre

ℱ ∘ Pre(Y +
c ) = Y +

c
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5	 Heart of the Matter


Initialization

Consider an arbitrary class c amongst k classes and 
denote its probability by  then:


Condition (1): 

That is, the argmax of our output probability vector 
will be the target class  only if the probability of that 
class is greater than the “uniform threshold.”


However, condition (1) is implied by another 
condition that will lay the foundation for the explicit 
definition of the class pre-image. 


Condition (2): 

However, all vectors which satisfy condition (2) are 
precisely these vectors we defined to be . Thus:


Furthermore we see that


The convenience of condition (2) is that it presents an 
explicit definition that is easy to work with. That is, a 
vector  is of the form:


 


Where 


And


 (ie real variables).


That is, the delta vector ensures that the argmax is . 
This delta vector and the  constant present the first 
set of parameters of the pre-image function.


We can then recover the family of previous activations 
that result in our family of z-vectors using:


The Central Result

With the starting case defined, it is possible to extract 
the general backwards recurrence which goes from 
activation to activation and terminates at .


Backward Recurrence:


With special cases


6	 Analysis


What has just been demonstrated is that it is possible 
to define any class pre-image in terms of the the 
parameter matrices and a set of vectors and 
parameters that are derived from the parameters 
themselves. Formally:


That is, the pre-image of any class is a function of the 
class number, the delta vector, the parameter matrices 
and the coefficients of the null space vectors. 


Note: Within the pre-image function we must assume 
that a null-space bases have already been found. An 
algorithmic implementation would need to extract 
these.


7	 Initial Experiments

It seems that leaky relu as the network grows deeper 
has a “higher” dimensional pseudo inverse than 10 
dimensions. It seems that relu does not if don’t include 
null parts. Furthermore it seems that relu might be 
even easier to attack than leaky relu if we use the 
simple linear pseudo inverse of relu. 


pc

argmax(ŷ) = c ⇒ pc >
1
k

c

argmax(z[L]) = c

Y +
c

Y +
c = {zi |argmax(zi) = c}

softmax(Y +
c ) = Yc

z[L]
c ∈ Y +

c

z[L]
c = zc − δ =

zc − δ1
⋮
zc
⋮

zc − δk

δi > 0

δi, zc ∈ ℝ

c
zc

a[L]
c = (Θ[L])+(z[L]

c − δ − b[L]) + n[L]

Xc = a[0]
c

z[l]
c = f −1(a[l+1]

c )

a[l−1]
c = (Θ[l])+(z[l]

c − b[l]) + n[l]

a[L]
c = (Θ[L])+(z[L]

c − δ − b[L]) + n[L]

a[0]
c = Xc

Pre(Y +
c ) = F (c, zc, δ, {Θ[l]}, N )
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Data

Pytorch MNIST data was used for all experiments 
(60,000 training set and 10,000 test set). For simplicity, 
the data was used raw (ie no augmentation or 
centering).


Networks Architectures Used

The final non-linear mapping uses softmax. Other than 
this final layer, each layer uses a linear operation with 
a bias and leaky relu. Each layer uses the same 
negative slope for the leaky relu nonlinearity. Thus, all 
that must be specified to list the networks is the 
dimension of each feature mapping.


Training

Since this was an experiment involving the preimages 
of each trained network, there was no tuning. For 
comparison, two optimizers were used: Adam and 
SGD with momentum = 0.9. The learning rate for both 
networks is 0.001. All models where trained for five 
epochs. The criterion was cross entropy loss. 


Preimage Calculation

Numerical issues, padding p, difference between 
Adam & SGD


Plausibility of Preimage Based Attacks

Null Preimage Poisoning (Low Fidelity Attack)

By removing the pseudo part of an input image one 
can “inject” adversarial data.


x̃ = x − x+ + a

Dim Net1 Net2 Net3 Net4 Net5

Input 784 784 784 784 784

Layer1 10 128 128 128 512

Layer2 10 64 64 256

Layer3 10 32 128

Layer4 10 64

Layer 5 32

Layer 6 10

Adam 92.73 97.78 97.46 97.08 97.38

SGD 92.20 97.24 97.46 97.19 97.12

Rank Full Full Full Full Full

Figure X:  The number of hidden units for each 
hidden layer, the rank of all trained parameter 
matrices and the test accuracy for each network and 
optimizer used. 

SGD,p=0 , batch size 5, 5 epochs linear,  z = np.random.rand(1)/100,delta = np.random.rand(10,1)/100. SGD 
weights produce more instability than Adam weights… just check the min and max of the pre to see if its 
possible. 
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8 Limitations


The analysis herein serves as solid ground for 
understanding and extending to a general solution. 
However, much of this analysis was made possible by 
convenient simplifying assumptions. Furthermore, 
there are other more complex architectures that will 
require more granular analysis.


9	 Refining the Result


It should be pointed out that the current result does 
not take into consideration constraints presented by 
natural data. For example, normalized pixel data 
restricts the preimage to vectors having components in 
the range [0,1]. The current recurrence can be refined 
further to incorporate these data restrictions. 


Forward Constraining

To incorporate an approximate solution to the 
“natural” constraint on the z-vector all that needs to be 
done is forward propagate min-max constraints for 
each component.  Using a simple lemma we can define 
the forward constraint: 


Lemma: 


That is, the i-th component of a matrix multiplied by a 
vector with components constrained to the range [a,b] 
is maximized when the vector uses its minimum a on 
the negative components of the row vector and its 
maximum on the positive values. That is, the inner 
product tries to make each term in the sum as positive 
as possible.


This lemma puts bounds on what we can sample. That 
is, we cannot sample a z-vector with any part outside 
the bounds. However, it doesn’t provide an exact way 
to find valid z-vectors. The problem is that once a 
component is fixed the bounds on the others might 
decrease and acquire “holes.” Thus what is needed is a 
way to cascade from component to component. 
However, delineating such constraints is the subject of 
further research.


10	 Further Research


Generalizing

To make the analysis complete, the case of variably 
ranked parameter matrices must be investigated. 
Furthermore, it should be investigated whether max 
rank is good assumption. That is, if neural networks 
tend to learn max rank parameter matrices. 


In defining the inverse recurrence the 
invertibility of the activation was assumed. Surjective 
functions like Relu should be investigated. 


∀x ∈ [a , b]n : argmaxx(Θx)i = b | | [rowi(Θ)T ]+ | |1 + a | | [rowi(Θ)T ]− | |1

Adam, linear, p = 1000,z=0,d=0, no null, question: is p=1000 even possible given the restriction the input 
domain? It is interesting to note that these preimages are not as crisp for p < 5 but keep their relative crispness 
as p grows to values even up to 100,000,000. Unlike SGD linear which becomes noisy for large values. 
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Subsequent works or follow up research 
should consider generalizing the analysis to arbitrary 
activations and architectures (eg CNN, RNN, 
AutoEncoders).


Adversarial Examples

A discussion on the pre-image of neural network 
classes is incomplete without at least mentioning 
adversarial examples. It should be noted that the 
existence of adversarial examples means that there 
exist “encroachments” between the pre-images of 

Figure 3: Even with a naive “forcing” method to make the preimage “natural” and constraining the pixel values 
to be between 0 and 0.10 the Adam preimages for the linear still produce 8 of the 10 the target outputs. This 
means that for these 8 classes the 774 null vectors can be used to generate arbitrary looking images and have 
this  added on top without much loss in fidelity. This points to the fact that the robust nature of neural networks 
is a double edged sword - even something so arbitrary as zeroing all negative values and standardizing to a 
small range. Interestingly, SGD weights are not susceptible to this low fidelity attack. 

Figure 4: Adam linear adversarial Examples occur because of the robust freedom allowed by the null space 
vectors. If one removes the pseudo part from any example and adds the low foot print noise they can attack the 
network with these examples. Interestingly these examples where generated exactly no optimization needed. z 
= 0  p=1000 delta = np.zeros((10,1) noise_scale = 10 exclude = [0,8]
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different classes. That is, these messy overlaps contain 
vectors which satisfy a certain condition. 


Attack Condition: A vector  satisfying 
 for some  and small value  is 

an adversarial example.


The attack condition states that an attack vector must 
be in the pre-image of a class  but be quantitatively 
close to some vector from class  where the example   
looks “natural.” That is, it must look like it belongs to 
another class. This is nothing new, however, further 

x̃ ∈ Xa
| | x̃ − xb | | < ϵ xb ∈ Xb ϵ

a
b xb

Figure 5: Adam preimages for each model tested with no null vectors. As the network gets deeper the 
numerical error begins to make the preimage calculation highly inaccurate. Furthermore, the results become 
more noisy. This could mean that the null vectors need to be chosen more strategically or point to a 
computational limit on numerical preimage calculation. The pixel values begin to grow large as the network 
gets deeper. For example, the first row has pixel ranges like [-0.2,0.2] but the final row has [-2000,2000].

Figure 6: Adversarial Examples for Adam-net1. Here tgt denotes the class we want the network to output. 
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analysis of the pre-image recurrence could yield 
insights. Fleshing out the theory of adversarial attacks 
is critical for AI safety.


An interesting thought is that there might be 
rigorously definable attacks overtime on RNNs (eg 
feints). Finally, attempts should be made to define the 
universal properties of attacks on neural networks and 
general classes of “counter” measures should be 
devised. An interesting though: what if we added 
adversarial noise for all classes to “drown” out an 
attack in “competing noise” thus allowing the greater 
information present in the image as a whole to 
“dominate” - predict the raw image, predict the 
“doped” image and if predictions defer flag the image.


More rigorous analysis of adversarial attacks 
and adversarial example generation. For example: 
finding the minimum amount of adversarial noise to 
move across decision boundaries. Develop higher 
resuolution attacks using the preimage method. 


Natural Constraints

Real data is constrained (eg normalized pixel values). 
A quick run down of the math and difficulty involved:


A good research endeavor would be to survey all 
experiments and open sourced code to verify that 
adversarial examples and high confidence noise 
generated do not go “out of bounds.” Thus making 
these examples “invalid” in a “natural” sense.


Implementation 

Closely tied to the natural constraint is the 
implementation. 

Having theoretical understanding is not enough. 
Algorithms for finding pre-images and discovering 
vulnerabilities as well as “firewalls” should be 
implemented and stress tested. 


Numerical Stability

Are there subsets of z-vectors which are inherently 
unstable to network pre-imaging? Can we find the 
stable parts? Is there a more effective way than using 
the pseudo inverse directly?


9	 Conclusion


This work serves as the initial starting point for a 
series of publications to come. Where the points 
alluded to in the previous section will be explored and 
developed. It is hoped that this work serves to help 
ground our understanding of deep networks on a 
more rigorous and theoretical level.
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11	 Appendices


The Admissibility of All Null Space Vectors

A concern one might have with using the null space 
vectors in the backward recurrence is whether or not 
all the null space vectors are admissible in the pre-
image. That is, can we prove that no null space vector 
will shift the output to be in a different class?


At face value it is obvious that all null space vectors as 
admissible because they cannot affect the output. Thus 
they can only “broaden” the preimage. However, A 
direct proof is possible by substituting the definition of 
the pre-image into the network forward function:


First a new notation is necessary to for the proof:


That is, it is a sub path of the network forward 
function if we view the full network as a path.


Evaluating the network on the class pre-image we get:


This simplifies to


because  and 
But we can again simplify this to


That is, we see that


We can carry this all the way to the last layer


But we can substitute the definition of  into the 
equation to obtain


Which reduces to


What this demonstrates is that the backward 
recurrence is admissible for all null space vectors. 
Additionally, there are no more vectors that could be 
in the pre-image because the row space is orthogonal 
to the null space and hence the null space basis 
combined with the row space basis are a full basis.

ℱ[i: j] = ℱ[ j] ∘ … ∘ ℱ[i]

ℱ(Xc) = ℱ[2:L] ∘ f (Θ[1](Θ[1])+(z[1]
c − b[1]) + Θ[1]n[1] + b[1])

ℱ(Xc) = ℱ[2:L] ∘ f (z[1]
c )

z[1]
c − b[1] ∈ C(Θ[1]) Θ[1]n[1] = 0

ℱ(Xc) = ℱ[2:L](a[2]
c )

ℱ[i:L](a[i]
c ) = ℱ[i+1:L](a[i+1]

c )

ℱ[L](a[L−1]
c ) = Θ[L]a[L−1]

c + b[L]

a[L−1]
c

ℱ[L](a[L−1]
c ) = Θ[L]((Θ[L])+(z[L]

c − b) + n[l]) + b[L]

ℱ[L](a[L−1]
c ) = z[L]

c ◼
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